My name is Doug Brugge; I have a PhD in cellular and developmental biology from Harvard University and an MS in industrial hygiene from the Harvard School of Public Health. I am currently Professor in the Department of Public Health and Community Medicine at Tufts University School of Medicine. I direct a series of studies of traffic-related air pollution and the Tufts Community Research Center. I also hold adjunct appointments at the Jonathan M. Tisch College of Citizenship and Public Service, the Sackler School of Biomedical Science and the School of Engineering. I have over 25 academic publications about uranium, including a 2006 book, The Navajo People and Uranium Mining that I co-edited with Timothy Benally and Esther Yazzie-Lewis, original research and recent reviews of the toxicity of uranium and radium.

Uranium is extracted from uranium ore, which contains a broad range of toxic substances in addition to uranium itself, including many that are radioactive, some that are toxic metals and a few that exert their toxicity through both radiation and their chemical properties. Uranium itself gives rise to a series of other radioactive elements after it decays that are found in raw, natural

ore. Significant among these are radium and radon, both of which are highly radioactive. When radium decays it produces radon gas, a potent toxin. Because it is a gas that becomes airborne, when radon decays it transforms into a series of highly radioactive "radon daughters" that can lodge in the lungs.

The primary metal toxins in many uranium ores include uranium itself and arsenic, as well as vanadium, beryllium, and manganese. Clearly, uranium ore is a toxic brew of numerous nasty hazardous materials. During the processing of uranium ore, many of the contaminants are removed as uranium becomes more and more pure, although some contaminants are carried forward, at least up to a point. The milling and processing of uranium, however, is done in industrial settings that may add other toxins to the environment, such as strong acids and organic solvents, exposures that I will not address here.

As it turns out, many of the toxic and radioactive elements in uranium ore have long been studied for their effects on human health, some, such as uranium itself, for hundreds of years. Because of the deep scientific record, we know more about some of these substances than more recent, manmade chemicals only recently brought into use. However, I must note, that while there is much that we know, there is new knowledge generated regularly. For example, a number of years ago, a paper appeared in the leading environmental health journal showing that uranium had estrogenic properties in mice, something I would not have suspected prior to that study.4 So what we have is a solid base of knowledge showing some strong causal links between uranium ore and health and the possibility that there are additional toxic properties that have yet to emerge in the scientific literature.

The health effects of uranium ore components that rise to the level of proven or near-proven causal links include:

1) Radon causes lung cancer, in fact, it is the primary source of lung cancer among non-smoking Native American uranium miners;

2) Uranium causes damage to the kidneys, DNA damage and birth defects (the latter in animals);

3) Radium causes bone cancer, cancer of the nasal sinuses and mastoid air cells and leukemia; and

4) Arsenic causes lung and skin cancer, as well as neurotoxicity, hyperpigmentation and hyperkeratosis of the skin.

There are other health effects that have been seen in some studies, but the ones I listed are some of the outcomes for which the science is strongest. A more complete review of the toxicity of uranium and radium can be found in my review articles.\(^5\) I would also be happy to direct your staff to complete and detailed documentation about the science that backs up my assertions as well as studies suggesting other health effects. The US ATSDR has compiled detailed toxicological profiles for each of the main contaminants I listed above, which summarize thousands of scientific studies.

The point here is that there is a solid core of health effects that are documented scientifically at a level that supports a causal link between these exposures and human health. In addition, there are numerous other possible health effects that are emerging, such as growing evidence in animal studies of neurological effects or uranium and growing evidence of reproductive effects. In short, uranium ore is well proven to have adverse health impacts. There are no known benefits to such exposure and as time proceeds, it is only likely that additional health concerns will be added to the list.

BIOGRAPHICAL SKETCH

Provide the following information for the Senior/key personnel and other significant contributors in the order listed on Form Page 2. Follow this format for each person. DO NOT EXCEED FOUR PAGES.

NAME
Douglas M. Brugge

POSITION TITLE
Professor

eRA COMMONS USER NAME (credential, e.g., agency login)
DBRUGGE1

EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, include postdoctoral training and residency training if applicable.)

<table>
<thead>
<tr>
<th>INSTITUTION AND LOCATION</th>
<th>DEGREE (if applicable)</th>
<th>MM/YY</th>
<th>FIELD OF STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington University</td>
<td>BA</td>
<td>05/82</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Harvard University</td>
<td>PhD</td>
<td>11/87</td>
<td>Biology</td>
</tr>
<tr>
<td>Harvard School of Public Health</td>
<td>MS</td>
<td>06/88</td>
<td>Industrial Hygiene</td>
</tr>
</tbody>
</table>

A. Personal Statement

I have worked on the issue of uranium mining for 15 years, primarily with Native Americans in the South Western US. My background is in biology and chemistry and I recently completed critical readings and reviews of the epidemiological and toxicological literature of health effects of both uranium and radium. I am also well versed in the literature on radon. I have participated in exposure assessment for a study of Native Americans living near uranium mining in the US and was a co-investigator on the Nuclear Risk Management for Native Communities project [ES 07255-06, Goble PI]. I have also published a couple of papers about the history of uranium mining in the US. Pertinent to this proposal, I have a degree in industrial hygiene and considerable experience with environmental exposure assessment. I currently direct the Community Assessment of Freeway Exposure and Health study [ES015462, Brugge PI; CA148612, Brugge Project PI; HUD MALHH0194-09] which is collecting extensive air monitoring data next to highways in and near Boston and recruited 700 participants from whom extensive health data was collected, including blood samples. This study met its recruitment and other data collection goals. This project has produced 17 papers in academic journals so far. My past experience includes being co-director of the Healthy Public Housing Initiative, a multi-year observational and intervention study of asthmatic children funded primarily by US HUD and the Kellogg Foundation. My experience and skills are a good fit for the proposed work, because of my demonstrated ability to navigate intercultural collaborations, my knowledge of the uranium literature, my demonstrated ability to direct large environmental epidemiology studies and my record of producing peer reviewed publications.

B. Positions and Honors

1994 – 1998 Lecturer/Researcher, Department of Family Medicine and Community Health, Tufts University School of Medicine
1998 – 2004 Assistant Professor, Department of Family Medicine and Community Health, Tufts University School of Medicine
2004 – 2009 Associate Professor, Department of Public Health and Community Medicine, Tufts University School of Medicine
2009 – present Professor, Department of Public Health and Community Medicine, Tufts University School of Medicine

Reviewer:
CBPR Special Review Panel, ZRG1 HOP-M 50 R (2008-2009)
Community Level Health Promotion Study Section ad hoc reviewer, NIH (2005-2006)
Epidemiology of Bacterial Infection and Asthma, NIH (2007), 2008/01 ZRG1 HOP-W (02) M
Health Literacy Study Section, NIH (2007-2009), 2008/01 ZRG1 RPHB-B (50) R
Full member and chair, Community Level Health Promotion Study Section, NIH, starting July 1, 2010
C. Peer-reviewed Publications (Selected from over 100 publications)

Most relevant to the current application

Additional recent publications of importance to the field (in chronological order)

D. Research Support

Ongoing Research Support

5R01 ES015462-05 (Brugge) 06/13/08 - 03/31/14

NIH/NIEHS NCE
Community Assessment of Freeway Pollution and Health (CAFEH)
To study the relationship between air pollutants emitted from motor vehicles on major highways and chronic health effects in individuals living in nearby communities.
Role: Principal Investigator

Tufts University (Brugge) 07/01/05 - 06/30/14
Tufts Community Research Center
Jonathan M. Tisch College of Citizenship and Public Service
Tufts Community Research Center operating budget.
Role: Director

Kresge Foundation (Brugge) 6/1/13 – 5/30/16
Improving the Health of Near-Highway Communities
This project will seek to change municipal policy in the City of Somerville and alter building designs in the Chinatown community in ways that protect residents from highway air pollution.
Role: Principal Investigator

RFA-EH-12-00102 (Adamkiewicz) 07/01/13 – 06/30/14
NIH/NCEH/Subcontract with Harvard
Green Housing Study: Follow-up measurements of housing factors and respiratory health of children located in Cincinnati and Boston
This study is looking at changes in environmental factors and asthma in families living in housing that is undergoing upgrades designed to reduce energy use and to be more environmentally healthy.

1P50HL10518503(Tucker 09/01/13 – 11/30/15
NIH/NHLBI/-UMASS subcontract)
Boston Puerto Rican Health Study
Our overall aim for this renewal is, to extend follow-up and to measure and analyze relevant characteristics and CVD risk factors, and to add additional contextual and outcome measures for CVD risk in this established cohort of Puerto Rican adults, so that we may better understand the dynamics of these disparities.
Role: Principal Investigator of Project 4.

MALHH0194-09 (Durant) 02/01/13 – 01/31/15
Federal Office of Housing and Urban Development (HUD)
Evaluation of Cardiovascular Health Benefits of In-home Air Filtration
We propose to measure the health benefits of air cleaning technology in homes adjacent to a highway in Somerville, Massachusetts, just north of Boston. This study builds on an on-going, NIEHS-funded, investigation of health effects in people exposed to near-highway air pollution.
Role: Co-Investigator

MALHH0194-09 (Durant) 05/01/10 – 08/31/13
Federal Office of Housing and Urban Development (HUD)
Evaluation of Cardiovascular Health Benefits of In-home Air Filtration
We propose to measure the health benefits of air cleaning technology in homes adjacent to a highway in Somerville, Massachusetts, just north of Boston. This study builds on an on-going, NIEHS-funded, investigation of health effects in people exposed to near-highway air pollution.
Role: Co-Investigator

PENDING
EPA 09/01/14 – 08/31/17
EPA-G2013-STAR-H1
Reducing traffic pollution in schools: Impact on learning-related measures
This study we propose a filtration intervention study to reduce near highway particulate air pollution and to test association of the reductions with measures of cognitive function in a school in Somerville, MA.
Score: Excellent

NIH
UMASS, Boston (Wong) Subcontract 07/01/13 – 06/30/16

Visualizing Highway Pollution and It’s Effects: A Study of Inter-Generational Health Communication in an Immigrant Community
This is a developmental project to produce a health communication intervention. The goal is to make complex scientific information about exposure of Boston Chinatown to traffic-related air pollution, an important health factor, accessible to the community’s residents. We will use a computer program to make invisible air pollution visible on a computer display screen to lay persons with limited English proficiency.
Role: Co-Principal Investigator
This application was reviewed and got a score of 41 and will be resubmitted in March 2014.

Completed Research Support
UL1 RR025752 (Selker) 05/19/08 - 04/13/13

NIH

Clinical and Translational Science Initiative
The community engagement component of the CTSI will work with local community organizations to improve their understanding of and involvement in research.
Role: Co-Investigator

RFA-EH-12-001 (Adamkiewicz) 07/01/12 – 06/30/13
NIH/NCEH/Subcontract with Harvard

Green Housing Study: Boston Follow-up
This study is looking at changes in environmental factors and asthma in families living in housing that is undergoing upgrades designed to reduce energy use and to be more environmentally healthy.

1D18HP13622-03-00 (Brugge) 09/01/09 – 06/30/13

HRSA

Health Careers Opportunity Program
Our program will increase the number of disadvantaged students graduating from: 1) medical school in primary care and/or 2) public health graduate programs. The partnership includes students, teachers, professors, professionals, administrators, and parents.
Role: Principal Investigator

Tufts University internal grant (McWayne) 07/1/11 to 6/30/12

University-Municipal Partnerships for Children’s School Success
Evolving SomerPromise by Bringing Systems Together through Integrated Data
Role: Co-Principal Investigator

1R24MD005095-01 (Martinez & Brugge) 09/21/09 – 06/30/12

NIH

Nuestro Futuro Saludable: The JP Partnership for Healthy Caribbean Latino Youth
This project is significant because, (1) it is a within-group intervention research project targeting a not well-understood sub-population of the Latino demographic; (2) the project is unique because it brings together a diverse group of community stakeholders: (3) key personnel are primarily people of color, with a majority of bilingual Latina women of varying backgrounds; and (4) the project introduces two new investigators of color.
Role: Co-Principal Investigator